Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

$\mathrm{G}$-theory of $\mathbb{F}_1$-algebras I: the equivariant Nishida problem (1110.6001v4)

Published 27 Oct 2011 in math.AT, math.KT, and math.RA

Abstract: We develop a version of $\mathrm{G}$-theory for an $\mathbb{F}1$-algebra (i.e., the $\mathrm{K}$-theory of pointed $G$-sets for a pointed monoid $G$) and establish its first properties. We construct a Cartan assembly map to compare the Chu--Morava $\mathrm{K}$-theory for finite pointed groups with our $\mathrm{G}$-theory. We compute the $\mathrm{G}$-theory groups for finite pointed groups in terms of stable homotopy of some classifying spaces. We introduce certain Loday--Whitehead groups over $\mathbb{F}_1$ that admit functorial maps into classical Whitehead groups under some reasonable hypotheses. We initiate a conjectural formalism using combinatorial Grayson operations to address the Equivariant Nishida Problem - it asks whether $\mathbb{S}G$ admits operations that endow $\oplus_n\pi{2n}(\mathbb{S}G)$ with a pre-$\lambda$-ring structure, where $G$ is a finite group and $\mathbb{S}G$ is the $G$-fixed point spectrum of the equivariant sphere spectrum.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)