Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Variational inference of the drift function for stochastic differential equations driven by Lévy processes (2103.15080v1)

Published 28 Mar 2021 in math.ST and stat.TH

Abstract: In this paper, we consider the nonparametric estimation problem of the drift function of stochastic differential equations driven by $\alpha$-stable L\'{e}vy motion. First, the Kullback-Leibler divergence between the path probabilities of two stochastic differential equations with different drift functions is optimized. By using the Lagrangian multiplier, the variational formula based on the stationary Fokker-Planck equation is constructed. Then combined with the data information, the empirical distribution is used to replace the stationary density, and the drift function is estimated non-parametrically from the perspective of the process. In the numerical experiment, the different amounts of data and different $\alpha$ values are studied. The experimental results show that the estimation result of the drift function is related to both. When the amount of data increases, the estimation result will be better, and when the $\alpha$ value increases, the estimation result is also better.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.