Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Fluctuations in Wasserstein dynamics on Graphs (2408.08505v1)

Published 16 Aug 2024 in math.PR and math.AP

Abstract: In this paper, we propose a drift-diffusion process on the probability simplex to study stochastic fluctuations in probability spaces. We construct a counting process for linear detailed balanced chemical reactions with finite species such that its thermodynamic limit is a system of ordinary differential equations (ODE) on the probability simplex. This ODE can be formulated as a gradient flow with an Onsager response matrix that induces a Riemannian metric on the probability simplex. After incorporating the induced Riemannian structure, we propose a diffusion approximation of the rescaled counting process for molecular species in the chemical reactions, which leads to Langevin dynamics on the probability simplex with a degenerate Brownian motion constructed from the eigen-decomposition of Onsager's response matrix. The corresponding Fokker-Planck equation on the simplex can be regarded as the usual drift-diffusion equation with the extrinsic representation of the divergence and Laplace-Beltrami operator. The invariant measure is the Gibbs measure, which is the product of the original macroscopic free energy and a volume element. When the drift term vanishes, the Fokker-Planck equation reduces to the heat equation with the Laplace-Beltrami operator, which we refer to as canonical Wasserstein diffusions on graphs. In the case of a two-point probability simplex, the constructed diffusion process is converted to one dimensional Wright-Fisher diffusion process, which leads to a natural boundary condition ensuring that the process remains within the probability simplex.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com