Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Strong consistency of an estimator by the truncated singular value decomposition for an errors-in-variables regression model with collinearity (2311.17407v1)

Published 29 Nov 2023 in math.ST, cs.NA, math.NA, and stat.TH

Abstract: In this paper, we prove strong consistency of an estimator by the truncated singular value decomposition for a multivariate errors-in-variables linear regression model with collinearity. This result is an extension of Gleser's proof of the strong consistency of total least squares solutions to the case with modern rank constraints. While the usual discussion of consistency in the absence of solution uniqueness deals with the minimal norm solution, the contribution of this study is to develop a theory that shows the strong consistency of a set of solutions. The proof is based on properties of orthogonal projections, specifically properties of the Rayleigh-Ritz procedure for computing eigenvalues. This makes it suitable for targeting problems where some row vectors of the matrices do not contain noise. Therefore, this paper gives a proof for the regression model with the above condition on the row vectors, resulting in a natural generalization of the strong consistency for the standard TLS estimator.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)