Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

The Cohomology Annihilator of a Curve Singularity (1807.05471v3)

Published 15 Jul 2018 in math.AC

Abstract: The aim of this paper is to study the theory of cohomology annihilators over commutative Gorenstein rings. We adopt a triangulated category point of view and study the annihilation of stable category of maximal Cohen-Macaulay modules. We prove that in dimension one the cohomology annihilator ideal and the conductor ideal coincide under mild assumptions. We present a condition on a ring homomorphism between Gorenstein rings which allows us to carry the cohomology annihilator of the domain to that of the codomain. As an application, we generalize the Milnor-Jung formula for algebraic curves to their double branched covers. We also show that the cohomology annihilator of a Gorenstein local ring is contained in the cohomology annihilator of its Henselization and in dimension one the cohomology annihilator of its completion. Finally, we investigate a relation between the cohomology annihilator of a Gorenstein ring and stable annihilators of its noncommutative resolutions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.