Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A relaxation of the strong Bordeaux Conjecture (1508.07890v1)

Published 31 Aug 2015 in math.CO

Abstract: Let $c_1, c_2, \cdots, c_k$ be $k$ non-negative integers. A graph $G$ is $(c_1, c_2, \cdots, c_k)$-colorable if the vertex set can be partitioned into $k$ sets $V_1,V_2, \ldots, V_k$, such that the subgraph $G[V_i]$, induced by $V_i$, has maximum degree at most $c_i$ for $i=1, 2, \ldots, k$. Let $\mathcal{F}$ denote the family of plane graphs with neither adjacent 3-cycles nor $5$-cycle. Borodin and Raspaud (2003) conjectured that each graph in $\mathcal{F}$ is $(0,0,0)$-colorable. In this paper, we prove that each graph in $\mathcal{F}$ is $(1, 1, 0)$-colorable, which improves the results by Xu (2009) and Liu-Li-Yu (2014+).

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.