Papers
Topics
Authors
Recent
2000 character limit reached

Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space (1310.7166v2)

Published 27 Oct 2013 in math.AP

Abstract: In this paper, we prove that there exists some small $\varepsilon_>0$, such that the derivative nonlinear Schr\"{o}dinger equation (DNLS) is global well-posedness in the energy space, provided that the initial data $u_0\in H1(\mathbb{R})$ satisfies $|u_0|{L2}<\sqrt{2\pi}+\varepsilon$. This result shows us that there are no blow up solutions whose masses slightly exceed $2\pi$, even if their energies are negative. This phenomenon is much different from the behavior of nonlinear Schr\"odinger equation with critical nonlinearity. The technique is a variational argument together with the momentum conservation law. Further, for the DNLS on half-line $\mathbb{R}+$, we show the blow-up for the solution with negative energy.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.