Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Duality in elliptic Ruijsenaars system and elliptic symmetric functions (2103.02508v2)

Published 3 Mar 2021 in hep-th, math-ph, and math.MP

Abstract: We demonstrate that the symmetric elliptic polynomials $E_\lambda(x)$ originally discovered in the study of generalized Noumi-Shiraishi functions are eigenfunctions of the elliptic Ruijsenaars-Schneider (eRS) Hamiltonians that act on the mother function variable $y_i$ (substitute of the Young-diagram variable $\lambda$). This means they are eigenfunctions of the dual eRS system. At the same time, their orthogonal complements in the Schur scalar product, $P_R(x)$ are eigenfunctions of the elliptic reduction of the Koroteev-Shakirov (KS) Hamiltonians. This means that these latter are related to the dual eRS Hamiltonians by a somewhat mysterious orthogonality transformation, which is well defined only on the full space of time variables, while the coordinates $x_i$ appear only after the Miwa transform. This observation explains the difficulties with getting the apparently self-dual Hamiltonians from the double elliptic version of the KS Hamiltonians.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.