Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Cremmer--Gervais cluster structure on $SL_n$ (1308.2558v1)

Published 12 Aug 2013 in math.QA

Abstract: We study natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson-Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin-Drinfeld classification of Poisson-Lie structures on $\G$ corresponds to a cluster structure in $\O(\G)$. We have shown before that this conjecture holds for any $\G$ in the case of the standard Poisson--Lie structure and for all Belavin-Drinfeld classes in $SL_n$, $n<5$. In this paper we establish it for the Cremmer-Gervais Poisson-Lie structure on $SL_n$, which is the least similar to the standard one. Besides, we prove that on $SL_3$ the cluster algebra and the upper cluster algebra corresponding to the Cremmer-Gervais cluster structure do not coincide, unlike the case of the standard cluster structure. Finally, we show that the positive locus with respect to the Cremmer-Gervais cluster structure is contained in the set of totally positive matrices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.