Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Feature Learning for Fault Detection in High-Dimensional Condition-Monitoring Signals (1810.05550v2)

Published 12 Oct 2018 in cs.AI

Abstract: Complex industrial systems are continuously monitored by a large number of heterogeneous sensors. The diversity of their operating conditions and the possible fault types make it impossible to collect enough data for learning all the possible fault patterns. The paper proposes an integrated automatic unsupervised feature learning and one-class classification for fault detection that uses data on healthy conditions only for its training. The approach is based on stacked Extreme Learning Machines (namely Hierarchical, or HELM) and comprises an autoencoder, performing unsupervised feature learning, stacked with a one-class classifier monitoring the distance of the test data to the training healthy class, thereby assessing the health of the system. This study provides a comprehensive evaluation of HELM fault detection capability compared to other machine learning approaches, such as stand-alone one-class classifiers (ELM and SVM), these same one-class classifiers combined with traditional dimensionality reduction methods (PCA) and a Deep Belief Network. The performance is first evaluated on a synthetic dataset that encompasses typical characteristics of condition monitoring data. Subsequently, the approach is evaluated on a real case study of a power plant fault. The proposed algorithm for fault detection, combining feature learning with the one-class classifier, demonstrates a better performance, particularly in cases where condition monitoring data contain several non-informative signals.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.