Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Overlapped speech recognition from a jointly learned multi-channel neural speech extraction and representation (1910.13825v1)

Published 30 Oct 2019 in eess.AS

Abstract: We propose an end-to-end joint optimization framework of a multi-channel neural speech extraction and deep acoustic model without mel-filterbank (FBANK) extraction for overlapped speech recognition. First, based on a multi-channel convolutional TasNet with STFT kernel, we unify the multi-channel target speech enhancement front-end network and a convolutional, long short-term memory and fully connected deep neural network (CLDNN) based acoustic model (AM) with the FBANK extraction layer to build a hybrid neural network, which is thus jointly updated only by the recognition loss. The proposed framework achieves 28% word error rate reduction (WERR) over a separately optimized system on AISHELL-1 and shows consistent robustness to signal to interference ratio (SIR) and angle difference between overlapping speakers. Next, a further exploration shows that the speech recognition is improved with a simplified structure by replacing the FBANK extraction layer in the joint model with a learnable feature projection. Finally, we also perform the objective measurement of speech quality on the reconstructed waveform from the enhancement network in the joint model.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.