BOPO: Neural Combinatorial Optimization via Best-anchored and Objective-guided Preference Optimization (2503.07580v3)
Abstract: Neural Combinatorial Optimization (NCO) has emerged as a promising approach for NP-hard problems. However, prevailing RL-based methods suffer from low sample efficiency due to sparse rewards and underused solutions. We propose Best-anchored and Objective-guided Preference Optimization (BOPO), a training paradigm that leverages solution preferences via objective values. It introduces: (1) a best-anchored preference pair construction for better explore and exploit solutions, and (2) an objective-guided pairwise loss function that adaptively scales gradients via objective differences, removing reliance on reward models or reference policies. Experiments on Job-shop Scheduling Problem (JSP), Traveling Salesman Problem (TSP), and Flexible Job-shop Scheduling Problem (FJSP) show BOPO outperforms state-of-the-art neural methods, reducing optimality gaps impressively with efficient inference. BOPO is architecture-agnostic, enabling seamless integration with existing NCO models, and establishes preference optimization as a principled framework for combinatorial optimization.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.