Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

How deep is your network? Deep vs. shallow learning of transfer operators (2509.19930v1)

Published 24 Sep 2025 in cs.LG, math.DS, and stat.ML

Abstract: We propose a randomized neural network approach called RaNNDy for learning transfer operators and their spectral decompositions from data. The weights of the hidden layers of the neural network are randomly selected and only the output layer is trained. The main advantage is that without a noticeable reduction in accuracy, this approach significantly reduces the training time and resources while avoiding common problems associated with deep learning such as sensitivity to hyperparameters and slow convergence. Additionally, the proposed framework allows us to compute a closed-form solution for the output layer which directly represents the eigenfunctions of the operator. Moreover, it is possible to estimate uncertainties associated with the computed spectral properties via ensemble learning. We present results for different dynamical operators, including Koopman and Perron-Frobenius operators, which have important applications in analyzing the behavior of complex dynamical systems, and the Schr\"odinger operator. The numerical examples, which highlight the strengths but also weaknesses of the proposed framework, include several stochastic dynamical systems, protein folding processes, and the quantum harmonic oscillator.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 9 likes.