Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Recovering Wasserstein Distance Matrices from Few Measurements (2509.19250v1)

Published 23 Sep 2025 in stat.ML and cs.LG

Abstract: This paper proposes two algorithms for estimating square Wasserstein distance matrices from a small number of entries. These matrices are used to compute manifold learning embeddings like multidimensional scaling (MDS) or Isomap, but contrary to Euclidean distance matrices, are extremely costly to compute. We analyze matrix completion from upper triangular samples and Nystr\"{o}m completion in which $\mathcal{O}(d\log(d))$ columns of the distance matrices are computed where $d$ is the desired embedding dimension, prove stability of MDS under Nystr\"{o}m completion, and show that it can outperform matrix completion for a fixed budget of sample distances. Finally, we show that classification of the OrganCMNIST dataset from the MedMNIST benchmark is stable on data embedded from the Nystr\"{o}m estimation of the distance matrix even when only 10\% of the columns are computed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.