Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Neighbor Embeddings Using Unbalanced Optimal Transport Metrics (2509.19226v1)

Published 23 Sep 2025 in stat.ML and cs.LG

Abstract: This paper proposes the use of the Hellinger--Kantorovich metric from unbalanced optimal transport (UOT) in a dimensionality reduction and learning (supervised and unsupervised) pipeline. The performance of UOT is compared to that of regular OT and Euclidean-based dimensionality reduction methods on several benchmark datasets including MedMNIST. The experimental results demonstrate that, on average, UOT shows improvement over both Euclidean and OT-based methods as verified by statistical hypothesis tests. In particular, on the MedMNIST datasets, UOT outperforms OT in classification 81\% of the time. For clustering MedMNIST, UOT outperforms OT 83\% of the time and outperforms both other metrics 58\% of the time.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 8 likes.