Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

NeuS-QA: Grounding Long-Form Video Understanding in Temporal Logic and Neuro-Symbolic Reasoning (2509.18041v1)

Published 22 Sep 2025 in cs.CV

Abstract: Long-Form Video Question Answering (LVQA) poses challenges beyond traditional visual question answering (VQA), which is often limited to static images or short video clips. While current vision-LLMs (VLMs) perform well in those settings, they struggle with complex queries in LVQA over long videos involving multi-step temporal reasoning and causality. Vanilla approaches, which sample frames uniformly and feed them to a VLM with the question, incur significant token overhead, forcing severe downsampling. As a result, the model often misses fine-grained visual structure, subtle event transitions, or key temporal cues, ultimately leading to incorrect answers. To address these limitations, recent works have explored query-adaptive frame sampling, hierarchical keyframe selection, and agent-based iterative querying. However, these methods remain fundamentally heuristic: they lack explicit temporal representations and cannot enforce or verify logical event relationships. As a result, there are no formal guarantees that the sampled context actually encodes the compositional or causal logic demanded by the question. To address these foundational gaps, we introduce NeuS-QA, a training-free, plug-and-play neuro-symbolic pipeline for LVQA. NeuS-QA translates a natural language question into a formal temporal logic expression, constructs a video automaton from frame-level semantic propositions, and applies model checking to rigorously identify video segments satisfying the question's logical requirements. Only these logic-verified segments are submitted to the VLM, thus improving interpretability, reducing hallucinations, and enabling compositional reasoning without modifying or fine-tuning the model. Experiments on LongVideoBench and CinePile show NeuS-QA improves performance by over 10%, especially on questions involving event ordering, causality, and multi-step compositional reasoning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube