Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generalized Momenta-Based Koopman Formalism for Robust Control of Euler-Lagrangian Systems (2509.17010v1)

Published 21 Sep 2025 in cs.RO, cs.SY, and eess.SY

Abstract: This paper presents a novel Koopman operator formulation for Euler Lagrangian dynamics that employs an implicit generalized momentum-based state space representation, which decouples a known linear actuation channel from state dependent dynamics and makes the system more amenable to linear Koopman modeling. By leveraging this structural separation, the proposed formulation only requires to learn the unactuated dynamics rather than the complete actuation dependent system, thereby significantly reducing the number of learnable parameters, improving data efficiency, and lowering overall model complexity. In contrast, conventional explicit formulations inherently couple inputs with the state dependent terms in a nonlinear manner, making them more suitable for bilinear Koopman models, which are more computationally expensive to train and deploy. Notably, the proposed scheme enables the formulation of linear models that achieve superior prediction performance compared to conventional bilinear models while remaining substantially more efficient. To realize this framework, we present two neural network architectures that construct Koopman embeddings from actuated or unactuated data, enabling flexible and efficient modeling across different tasks. Robustness is ensured through the integration of a linear Generalized Extended State Observer (GESO), which explicitly estimates disturbances and compensates for them in real time. The combined momentum-based Koopman and GESO framework is validated through comprehensive trajectory tracking simulations and experiments on robotic manipulators, demonstrating superior accuracy, robustness, and learning efficiency relative to state of the art alternatives.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube