Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hessian-guided Perturbed Wasserstein Gradient Flows for Escaping Saddle Points (2509.16974v1)

Published 21 Sep 2025 in math.OC and stat.ML

Abstract: Wasserstein gradient flow (WGF) is a common method to perform optimization over the space of probability measures. While WGF is guaranteed to converge to a first-order stationary point, for nonconvex functionals the converged solution does not necessarily satisfy the second-order optimality condition; i.e., it could converge to a saddle point. In this work, we propose a new algorithm for probability measure optimization, perturbed Wasserstein gradient flow (PWGF), that achieves second-order optimality for general nonconvex objectives. PWGF enhances WGF by injecting noisy perturbations near saddle points via a Gaussian process-based scheme. By pushing the measure forward along a random vector field generated from a Gaussian process, PWGF helps the solution escape saddle points efficiently by perturbing the solution towards the smallest eigenvalue direction of the Wasserstein Hessian. We theoretically derive the computational complexity for PWGF to achieve a second-order stationary point. Furthermore, we prove that PWGF converges to a global optimum in polynomial time for strictly benign objectives.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.