Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

VORTEX: Aligning Task Utility and Human Preferences through LLM-Guided Reward Shaping (2509.16399v1)

Published 19 Sep 2025 in cs.AI

Abstract: In social impact optimization, AI decision systems often rely on solvers that optimize well-calibrated mathematical objectives. However, these solvers cannot directly accommodate evolving human preferences, typically expressed in natural language rather than formal constraints. Recent approaches address this by using LLMs to generate new reward functions from preference descriptions. While flexible, they risk sacrificing the system's core utility guarantees. In this paper, we propose \texttt{VORTEX}, a language-guided reward shaping framework that preserves established optimization goals while adaptively incorporating human feedback. By formalizing the problem as multi-objective optimization, we use LLMs to iteratively generate shaping rewards based on verbal reinforcement and text-gradient prompt updates. This allows stakeholders to steer decision behavior via natural language without modifying solvers or specifying trade-off weights. We provide theoretical guarantees that \texttt{VORTEX} converges to Pareto-optimal trade-offs between utility and preference satisfaction. Empirical results in real-world allocation tasks demonstrate that \texttt{VORTEX} outperforms baselines in satisfying human-aligned coverage goals while maintaining high task performance. This work introduces a practical and theoretically grounded paradigm for human-AI collaborative optimization guided by natural language.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube