Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Classical and Quantum Heuristics for the Binary Paint Shop Problem (2509.15294v1)

Published 18 Sep 2025 in quant-ph, cs.DS, cs.ET, and math.OC

Abstract: The Binary Paint Shop Problem (BPSP) is an $\mathsf{APX}$-hard optimisation problem in automotive manufacturing: given a sequence of $2n$ cars, comprising $n$ distinct models each appearing twice, the task is to decide which of two colours to paint each car so that the two occurrences of each model are painted differently, while minimising consecutive colour swaps. The key performance metric is the paint swap ratio, the average number of colour changes per car, which directly impacts production efficiency and cost. Prior work showed that the Quantum Approximate Optimisation Algorithm (QAOA) at depth $p=7$ achieves a paint swap ratio of $0.393$, outperforming the classical Recursive Greedy (RG) heuristic with an expected ratio of $0.4$ [Phys. Rev. A 104, 012403 (2021)]. More recently, the classical Recursive Star Greedy (RSG) heuristic was conjectured to achieve an expected ratio of $0.361$. In this study, we develop the theoretical foundations for applying QAOA to BPSP through a reduction of BPSP to weighted MaxCut, and use this framework to benchmark two state-of-the-art low-depth QAOA variants, eXpressive QAOA (XQAOA) and Recursive QAOA (RQAOA), at $p=1$ (denoted XQAOA$_1$ and RQAOA$_1$), against the strongest classical heuristics known to date. Across instances ranging from $27$ to $2{12}$ cars, XQAOA$_1$ achieves an average ratio of $0.357$, surpassing RQAOA$_1$ and all classical heuristics, including the conjectured performance of RSG. Surprisingly, RQAOA$_1$ shows diminishing performance as size increases: despite using provably optimal QAOA$_1$ parameters at each recursion, it is outperformed by RSG on most $2{11}$-car instances and all $2{12}$-car instances. To our knowledge, this is the first study to report RQAOA$_1$'s performance degradation at scale. In contrast, XQAOA$_1$ remains robust, indicating strong potential to asymptotically surpass all known heuristics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube