Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Shedding Light on Dark Matter at the LHC with Machine Learning (2509.15121v1)

Published 18 Sep 2025 in hep-ph, cs.LG, and hep-ex

Abstract: We investigate a WIMP dark matter (DM) candidate in the form of a singlino-dominated lightest supersymmetric particle (LSP) within the $Z_3$-symmetric Next-to-Minimal Supersymmetric Standard Model. This framework gives rise to regions of parameter space where DM is obtained via co-annihilation with nearby higgsino-like electroweakinos and DM direct detection~signals are suppressed, the so-called ``blind spots". On the other hand, collider signatures remain promising due to enhanced radiative decay modes of higgsinos into the singlino-dominated LSP and a photon, rather than into leptons or hadrons. This motivates searches for radiatively decaying neutralinos, however, these signals face substantial background challenges, as the decay products are typically soft due to the small mass-splits ($\Delta m$) between the LSP and the higgsino-like coannihilation partners. We apply a data-driven Machine Learning (ML) analysis that improves sensitivity to these subtle signals, offering a powerful complement to traditional search strategies to discover a new physics scenario. Using an LHC integrated luminosity of $100~\mathrm{fb}{-1}$ at $14~\mathrm{TeV}$, the method achieves a $5\sigma$ discovery reach for higgsino masses up to $225~\mathrm{GeV}$ with $\Delta m!\lesssim!12~\mathrm{GeV}$, and a $2\sigma$ exclusion up to $285~\mathrm{GeV}$ with $\Delta m!\lesssim!20~\mathrm{GeV}$. These results highlight the power of collider searches to probe DM candidates that remain hidden from current direct detection experiments, and provide a motivation for a search by the LHC collaborations using ML methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube