Sentinel Agents for Secure and Trustworthy Agentic AI in Multi-Agent Systems (2509.14956v1)
Abstract: This paper proposes a novel architectural framework aimed at enhancing security and reliability in multi-agent systems (MAS). A central component of this framework is a network of Sentinel Agents, functioning as a distributed security layer that integrates techniques such as semantic analysis via LLMs, behavioral analytics, retrieval-augmented verification, and cross-agent anomaly detection. Such agents can potentially oversee inter-agent communications, identify potential threats, enforce privacy and access controls, and maintain comprehensive audit records. Complementary to the idea of Sentinel Agents is the use of a Coordinator Agent. The Coordinator Agent supervises policy implementation, and manages agent participation. In addition, the Coordinator also ingests alerts from Sentinel Agents. Based on these alerts, it can adapt policies, isolate or quarantine misbehaving agents, and contain threats to maintain the integrity of the MAS ecosystem. This dual-layered security approach, combining the continuous monitoring of Sentinel Agents with the governance functions of Coordinator Agents, supports dynamic and adaptive defense mechanisms against a range of threats, including prompt injection, collusive agent behavior, hallucinations generated by LLMs, privacy breaches, and coordinated multi-agent attacks. In addition to the architectural design, we present a simulation study where 162 synthetic attacks of different families (prompt injection, hallucination, and data exfiltration) were injected into a multi-agent conversational environment. The Sentinel Agents successfully detected the attack attempts, confirming the practical feasibility of the proposed monitoring approach. The framework also offers enhanced system observability, supports regulatory compliance, and enables policy evolution over time.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.