Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

AmbiDrop: Array-Agnostic Speech Enhancement Using Ambisonics Encoding and Dropout-Based Learning (2509.14855v1)

Published 18 Sep 2025 in eess.AS

Abstract: Multichannel speech enhancement leverages spatial cues to improve intelligibility and quality, but most learning-based methods rely on specific microphone array geometry, unable to account for geometry changes. To mitigate this limitation, current array-agnostic approaches employ large multi-geometry datasets but may still fail to generalize to unseen layouts. We propose AmbiDrop (Ambisonics with Dropouts), an Ambisonics-based framework that encodes arbitrary array recordings into the spherical harmonics domain using Ambisonics Signal Matching (ASM). A deep neural network is trained on simulated Ambisonics data, combined with channel dropout for robustness against array-dependent encoding errors, therefore omitting the need for a diverse microphone array database. Experiments show that while the baseline and proposed models perform similarly on the training arrays, the baseline degrades on unseen arrays. In contrast, AmbiDrop consistently improves SI-SDR, PESQ, and STOI, demonstrating strong generalization and practical potential for array-agnostic speech enhancement.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube