Evolution of Kernels: Automated RISC-V Kernel Optimization with Large Language Models (2509.14265v1)
Abstract: Automated kernel design is critical for overcoming software ecosystem barriers in emerging hardware platforms like RISC-V. While LLMs have shown promise for automated kernel optimization, demonstrating success in CUDA domains with comprehensive technical documents and mature codebases, their effectiveness remains unproven for reference-scarce domains like RISC-V. We present Evolution of Kernels (EoK), a novel LLM-based evolutionary program search framework that automates kernel design for domains with limited reference material. EoK mitigates reference scarcity by mining and formalizing reusable optimization ideas (general design principles + actionable thoughts) from established kernel libraries' development histories; it then guides parallel LLM explorations using these ideas, enriched via Retrieval-Augmented Generation (RAG) with RISC-V-specific context, prioritizing historically effective techniques. Empirically, EoK achieves a median 1.27x speedup, surpassing human experts on all 80 evaluated kernel design tasks and improving upon prior LLM-based automated kernel design methods by 20%. These results underscore the viability of incorporating human experience into emerging domains and highlight the immense potential of LLM-based automated kernel optimization.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.