Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Closeness Centrality-based Circuit Partitioner for Quantum Simulations (2509.14098v1)

Published 17 Sep 2025 in quant-ph and cs.DC

Abstract: Simulating quantum circuits (QC) on high-performance computing (HPC) systems has become an essential method to benchmark algorithms and probe the potential of large-scale quantum computation despite the limitations of current quantum hardware. However, these simulations often require large amounts of resources, necessitating the use of large clusters with thousands of compute nodes and large memory footprints. In this work, we introduce an end-to-end framework that provides an efficient partitioning scheme for large-scale QCs alongside a flexible code generator to offer a portable solution that minimizes data movement between compute nodes. By formulating the distribution of quantum states and circuits as a graph problem, we apply closeness centrality to assess gate importance and design a fast, scalable partitioning method. The resulting partitions are compiled into highly optimized codes that run seamlessly on a wide range of supercomputers, providing critical insights into the performance and scalability of quantum algorithm simulations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube