Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Trace Sampling 2.0: Code Knowledge Enhanced Span-level Sampling for Distributed Tracing (2509.13852v1)

Published 17 Sep 2025 in cs.SE

Abstract: Distributed tracing is an essential diagnostic tool in microservice systems, but the sheer volume of traces places a significant burden on backend storage. A common approach to mitigating this issue is trace sampling, which selectively retains traces based on specific criteria, often preserving only anomalous ones. However, this method frequently discards valuable information, including normal traces that are essential for comparative analysis. To address this limitation, we introduce Trace Sampling 2.0, which operates at the span level while maintaining trace structure consistency. This approach allows for the retention of all traces while significantly reducing storage overhead. Based on this concept, we design and implement Autoscope, a span-level sampling method that leverages static analysis to extract execution logic, ensuring that critical spans are preserved without compromising structural integrity. We evaluated Autoscope on two open-source microservices. Our results show that it reduces trace size by 81.2% while maintaining 98.1% faulty span coverage, outperforming existing trace-level sampling methods. Furthermore, we demonstrate its effectiveness in root cause analysis, achieving an average improvement of 8.3%. These findings indicate that Autoscope can significantly enhance observability and storage efficiency in microservices, offering a robust solution for performance monitoring.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube