Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Re-purposing SAM into Efficient Visual Projectors for MLLM-Based Referring Image Segmentation (2509.13676v1)

Published 17 Sep 2025 in cs.CV and cs.AI

Abstract: Recently, Referring Image Segmentation (RIS) frameworks that pair the Multimodal LLM (MLLM) with the Segment Anything Model (SAM) have achieved impressive results. However, adapting MLLM to segmentation is computationally intensive, primarily due to visual token redundancy. We observe that traditional patch-wise visual projectors struggle to strike a balance between reducing the number of visual tokens and preserving semantic clarity, often retaining overly long token sequences to avoid performance drops. Inspired by text tokenizers, we propose a novel semantic visual projector that leverages semantic superpixels generated by SAM to identify "visual words" in an image. By compressing and projecting semantic superpixels as visual tokens, our approach adaptively shortens the token sequence according to scene complexity while minimizing semantic loss in compression. To mitigate loss of information, we propose a semantic superpixel positional embedding to strengthen MLLM's awareness of superpixel geometry and position, alongside a semantic superpixel aggregator to preserve both fine-grained details inside superpixels and global context outside. Experiments show that our method cuts visual tokens by 93% without compromising performance, notably speeding up MLLM training and inference, and outperforming existing compressive visual projectors on RIS.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.