Prompt2DAG: A Modular Methodology for LLM-Based Data Enrichment Pipeline Generation (2509.13487v1)
Abstract: Developing reliable data enrichment pipelines demands significant engineering expertise. We present Prompt2DAG, a methodology that transforms natural language descriptions into executable Apache Airflow DAGs. We evaluate four generation approaches -- Direct, LLM-only, Hybrid, and Template-based -- across 260 experiments using thirteen LLMs and five case studies to identify optimal strategies for production-grade automation. Performance is measured using a penalized scoring framework that combines reliability with code quality (SAT), structural integrity (DST), and executability (PCT). The Hybrid approach emerges as the optimal generative method, achieving a 78.5% success rate with robust quality scores (SAT: 6.79, DST: 7.67, PCT: 7.76). This significantly outperforms the LLM-only (66.2% success) and Direct (29.2% success) methods. Our findings show that reliability, not intrinsic code quality, is the primary differentiator. Cost-effectiveness analysis reveals the Hybrid method is over twice as efficient as Direct prompting per successful DAG. We conclude that a structured, hybrid approach is essential for balancing flexibility and reliability in automated workflow generation, offering a viable path to democratize data pipeline development.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.