Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Selective Risk Certification for LLM Outputs via Information-Lift Statistics: PAC-Bayes, Robustness, and Skeleton Design (2509.12527v1)

Published 16 Sep 2025 in cs.LG and stat.ML

Abstract: LLMs often produce plausible but incorrect outputs. Existing heuristics such as HallBayes lack formal guarantees. We develop the first comprehensive theory of \emph{information-lift certificates} under selective classification. Our contributions are: (i) a PAC-Bayes \emph{sub-gamma} analysis extending beyond standard Bernstein bounds; (ii) explicit skeleton sensitivity theorems quantifying robustness to misspecification; (iii) failure-mode guarantees under assumption violations; and (iv) a principled variational method for skeleton construction. Across six datasets and multiple model families, we validate assumptions empirically, reduce abstention by 12--15\% at the same risk, and maintain runtime overhead below 20\% (further reduced via batching).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.