Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Causal-Symbolic Meta-Learning (CSML): Inducing Causal World Models for Few-Shot Generalization (2509.12387v1)

Published 15 Sep 2025 in cs.LG, cs.AI, and stat.ML

Abstract: Modern deep learning models excel at pattern recognition but remain fundamentally limited by their reliance on spurious correlations, leading to poor generalization and a demand for massive datasets. We argue that a key ingredient for human-like intelligence-robust, sample-efficient learning-stems from an understanding of causal mechanisms. In this work, we introduce Causal-Symbolic Meta-Learning (CSML), a novel framework that learns to infer the latent causal structure of a task distribution. CSML comprises three key modules: a perception module that maps raw inputs to disentangled symbolic representations; a differentiable causal induction module that discovers the underlying causal graph governing these symbols and a graph-based reasoning module that leverages this graph to make predictions. By meta-learning a shared causal world model across a distribution of tasks, CSML can rapidly adapt to novel tasks, including those requiring reasoning about interventions and counterfactuals, from only a handful of examples. We introduce CausalWorld, a new physics-based benchmark designed to test these capabilities. Our experiments show that CSML dramatically outperforms state-of-the-art meta-learning and neuro-symbolic baselines, particularly on tasks demanding true causal inference.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 3 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube