Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Enhancing Smart Farming Through Federated Learning: A Secure, Scalable, and Efficient Approach for AI-Driven Agriculture (2509.12363v1)

Published 15 Sep 2025 in cs.LG and cs.AI

Abstract: The agricultural sector is undergoing a transformation with the integration of advanced technologies, particularly in data-driven decision-making. This work proposes a federated learning framework for smart farming, aiming to develop a scalable, efficient, and secure solution for crop disease detection tailored to the environmental and operational conditions of Minnesota farms. By maintaining sensitive farm data locally and enabling collaborative model updates, our proposed framework seeks to achieve high accuracy in crop disease classification without compromising data privacy. We outline a methodology involving data collection from Minnesota farms, application of local deep learning algorithms, transfer learning, and a central aggregation server for model refinement, aiming to achieve improved accuracy in disease detection, good generalization across agricultural scenarios, lower costs in communication and training time, and earlier identification and intervention against diseases in future implementations. We outline a methodology and anticipated outcomes, setting the stage for empirical validation in subsequent studies. This work comes in a context where more and more demand for data-driven interpretations in agriculture has to be weighed with concerns about privacy from farms that are hesitant to share their operational data. This will be important to provide a secure and efficient disease detection method that can finally revolutionize smart farming systems and solve local agricultural problems with data confidentiality. In doing so, this paper bridges the gap between advanced machine learning techniques and the practical, privacy-sensitive needs of farmers in Minnesota and beyond, leveraging the benefits of federated learning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube