Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Developing an aeroponic smart experimental greenhouse for controlling irrigation and plant disease detection using deep learning and IoT (2509.12274v1)

Published 14 Sep 2025 in cs.AI, cs.CV, and cs.LG

Abstract: Controlling environmental conditions and monitoring plant status in greenhouses is critical to promptly making appropriate management decisions aimed at promoting crop production. The primary objective of this research study was to develop and test a smart aeroponic greenhouse on an experimental scale where the status of Geranium plant and environmental conditions are continuously monitored through the integration of the internet of things (IoT) and AI. An IoT-based platform was developed to control the environmental conditions of plants more efficiently and provide insights to users to make informed management decisions. In addition, we developed an AI-based disease detection framework using VGG-19, InceptionResNetV2, and InceptionV3 algorithms to analyze the images captured periodically after an intentional inoculation. The performance of the AI framework was compared with an expert's evaluation of disease status. Preliminary results showed that the IoT system implemented in the greenhouse environment is able to publish data such as temperature, humidity, water flow, and volume of charge tanks online continuously to users and adjust the controlled parameters to provide an optimal growth environment for the plants. Furthermore, the results of the AI framework demonstrate that the VGG-19 algorithm was able to identify drought stress and rust leaves from healthy leaves with the highest accuracy, 92% among the other algorithms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube