Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the universal calibration of Pareto-type linear combination tests (2509.12066v1)

Published 15 Sep 2025 in math.ST, math.PR, stat.AP, stat.ME, and stat.TH

Abstract: It is often of interest to test a global null hypothesis using multiple, possibly dependent, $p$-values by combining their strengths while controlling the Type I error. Recently, several heavy-tailed combinations tests, such as the harmonic mean test and the Cauchy combination test, have been proposed: they map $p$-values into heavy-tailed random variables before combining them in some fashion into a single test statistic. The resulting tests, which are calibrated under the assumption of independence of the $p$-values, have shown to be rather robust to dependence. The complete understanding of the calibration properties of the resulting combination tests of dependent and possibly tail-dependent $p$-values has remained an important open problem in the area. In this work, we show that the powerful framework of multivariate regular variation (MRV) offers a nearly complete solution to this problem. We first show that the precise asymptotic calibration properties of a large class of homogeneous combination tests can be expressed in terms of the angular measure -- a characteristic of the asymptotic tail-dependence under MRV. Consequently, we show that under MRV, the Pareto-type linear combination tests, which are equivalent to the harmonic mean test, are universally calibrated regardless of the tail-dependence structure of the underlying $p$-values. In contrast, the popular Cauchy combination test is shown to be universally honest but often conservative; the Tippet combination test, while being honest, is calibrated if and only if the underlying $p$-values are tail-independent. One of our major findings is that the Pareto-type linear combination tests are the only universally calibrated ones among the large family of possibly non-linear homogeneous heavy-tailed combination tests.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube