Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Lower bounds for planar Arithmetic Circuits (2509.11322v1)

Published 14 Sep 2025 in cs.CC

Abstract: Arithmetic circuits are a natural well-studied model for computing multivariate polynomials over a field. In this paper, we study planar arithmetic circuits. These are circuits whose underlying graph is planar. In particular, we prove an $\Omega(n\log n)$ lower bound on the size of planar arithmetic circuits computing explicit bilinear forms on $2n$ variables. As a consequence, we get an $\Omega(n\log n)$ lower bound on the size of arithmetic formulas and planar algebraic branching programs computing explicit bilinear forms on $2n$ variables. This is the first such lower bound on the formula complexity of an explicit bilinear form. In the case of read-once planar circuits, we show $\Omega(n2)$ size lower bounds for computing explicit bilinear forms on $2n$ variables. Furthermore, we prove fine separations between the various planar models of computations mentioned above. In addition to this, we look at multi-output planar circuits and show $\Omega(n{4/3})$ size lower bound for computing an explicit linear transformation on $n$-variables. For a suitable definition of multi-output formulas, we extend the above result to get an $\Omega(n2/\log n)$ size lower bound. As a consequence, we demonstrate that there exists an $n$-variate polynomial computable by an $n{1 + o(1)}$-sized formula such that any multi-output planar circuit (resp., multi-output formula) simultaneously computing all its first-order partial derivatives requires size $\Omega(n{4/3})$ (resp., $\Omega(n2/\log n)$). This shows that a statement analogous to that of Baur, Strassen (1983) does not hold in the case of planar circuits and formulas.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube