Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Action Hints: Semantic Typicality and Context Uniqueness for Generalizable Skeleton-based Video Anomaly Detection (2509.11058v1)

Published 14 Sep 2025 in cs.CV

Abstract: Zero-Shot Video Anomaly Detection (ZS-VAD) requires temporally localizing anomalies without target domain training data, which is a crucial task due to various practical concerns, e.g., data privacy or new surveillance deployments. Skeleton-based approach has inherent generalizable advantages in achieving ZS-VAD as it eliminates domain disparities both in background and human appearance. However, existing methods only learn low-level skeleton representation and rely on the domain-limited normality boundary, which cannot generalize well to new scenes with different normal and abnormal behavior patterns. In this paper, we propose a novel zero-shot video anomaly detection framework, unlocking the potential of skeleton data via action typicality and uniqueness learning. Firstly, we introduce a language-guided semantic typicality modeling module that projects skeleton snippets into action semantic space and distills LLM's knowledge of typical normal and abnormal behaviors during training. Secondly, we propose a test-time context uniqueness analysis module to finely analyze the spatio-temporal differences between skeleton snippets and then derive scene-adaptive boundaries. Without using any training samples from the target domain, our method achieves state-of-the-art results against skeleton-based methods on four large-scale VAD datasets: ShanghaiTech, UBnormal, NWPU, and UCF-Crime, featuring over 100 unseen surveillance scenes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube