Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Advanced Convolutional Neural Network for Bearing Fault Diagnosis under Limited Data (2509.11053v1)

Published 14 Sep 2025 in cs.LG, cs.AI, and cs.CE

Abstract: In the area of bearing fault diagnosis, deep learning (DL) methods have been widely used recently. However, due to the high cost or privacy concerns, high-quality labeled data are scarce in real world scenarios. While few-shot learning has shown promise in addressing data scarcity, existing methods still face significant limitations in this domain. Traditional data augmentation techniques often suffer from mode collapse and generate low-quality samples that fail to capture the diversity of bearing fault patterns. Moreover, conventional convolutional neural networks (CNNs) with local receptive fields makes them inadequate for extracting global features from complex vibration signals. Additionally, existing methods fail to model the intricate relationships between limited training samples. To solve these problems, we propose an advanced data augmentation and contrastive fourier convolution framework (DAC-FCF) for bearing fault diagnosis under limited data. Firstly, a novel conditional consistent latent representation and reconstruction generative adversarial network (CCLR-GAN) is proposed to generate more diverse data. Secondly, a contrastive learning based joint optimization mechanism is utilized to better model the relations between the available training data. Finally, we propose a 1D fourier convolution neural network (1D-FCNN) to achieve a global-aware of the input data. Experiments demonstrate that DAC-FCF achieves significant improvements, outperforming baselines by up to 32\% on case western reserve university (CWRU) dataset and 10\% on a self-collected test bench. Extensive ablation experiments prove the effectiveness of the proposed components. Thus, the proposed DAC-FCF offers a promising solution for bearing fault diagnosis under limited data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube