Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sparse Polyak: an adaptive step size rule for high-dimensional M-estimation (2509.09802v1)

Published 11 Sep 2025 in math.OC, cs.LG, and stat.ML

Abstract: We propose and study Sparse Polyak, a variant of Polyak's adaptive step size, designed to solve high-dimensional statistical estimation problems where the problem dimension is allowed to grow much faster than the sample size. In such settings, the standard Polyak step size performs poorly, requiring an increasing number of iterations to achieve optimal statistical precision-even when, the problem remains well conditioned and/or the achievable precision itself does not degrade with problem size. We trace this limitation to a mismatch in how smoothness is measured: in high dimensions, it is no longer effective to estimate the Lipschitz smoothness constant. Instead, it is more appropriate to estimate the smoothness restricted to specific directions relevant to the problem (restricted Lipschitz smoothness constant). Sparse Polyak overcomes this issue by modifying the step size to estimate the restricted Lipschitz smoothness constant. We support our approach with both theoretical analysis and numerical experiments, demonstrating its improved performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 11 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube