Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Vector embedding of multi-modal texts: a tool for discovery? (2509.08216v1)

Published 10 Sep 2025 in cs.IR

Abstract: Computer science texts are particularly rich in both narrative content and illustrative charts, algorithms, images, annotated diagrams, etc. This study explores the extent to which vector-based multimodal retrieval, powered by vision-LLMs (VLMs), can improve discovery across multi-modal (text and images) content. Using over 3,600 digitized textbook pages largely from computer science textbooks and a Vision LLM (VLM), we generate multi-vector representations capturing both textual and visual semantics. These embeddings are stored in a vector database. We issue a benchmark of 75 natural language queries and compare retrieval performance to ground truth and across four similarity (distance) measures. The study is intended to expose both the strengths and weakenesses of such an approach. We find that cosine similarity most effectively retrieves semantically and visually relevant pages. We further discuss the practicality of using a vector database and multi-modal embedding for operational information retrieval. Our paper is intended to offer design insights for discovery over digital libraries. Keywords: Vector embedding, multi-modal document retrieval, vector database benchmark, digital library discovery

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube