Beyond Sequential Reranking: Reranker-Guided Search Improves Reasoning Intensive Retrieval (2509.07163v1)
Abstract: The widely used retrieve-and-rerank pipeline faces two critical limitations: they are constrained by the initial retrieval quality of the top-k documents, and the growing computational demands of LLM-based rerankers restrict the number of documents that can be effectively processed. We introduce Reranker-Guided-Search (RGS), a novel approach that bypasses these limitations by directly retrieving documents according to reranker preferences rather than following the traditional sequential reranking method. Our method uses a greedy search on proximity graphs generated by approximate nearest neighbor algorithms, strategically prioritizing promising documents for reranking based on document similarity. Experimental results demonstrate substantial performance improvements across multiple benchmarks: 3.5 points on BRIGHT, 2.9 on FollowIR, and 5.1 on M-BEIR, all within a constrained reranker budget of 100 documents. Our analysis suggests that, given a fixed pair of embedding and reranker models, strategically selecting documents to rerank can significantly improve retrieval accuracy under limited reranker budget.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.