Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tackling the Noisy Elephant in the Room: Label Noise-robust Out-of-Distribution Detection via Loss Correction and Low-rank Decomposition (2509.06918v1)

Published 8 Sep 2025 in cs.LG and cs.AI

Abstract: Robust out-of-distribution (OOD) detection is an indispensable component of modern AI systems, especially in safety-critical applications where models must identify inputs from unfamiliar classes not seen during training. While OOD detection has been extensively studied in the machine learning literature--with both post hoc and training-based approaches--its effectiveness under noisy training labels remains underexplored. Recent studies suggest that label noise can significantly degrade OOD performance, yet principled solutions to this issue are lacking. In this work, we demonstrate that directly combining existing label noise-robust methods with OOD detection strategies is insufficient to address this critical challenge. To overcome this, we propose a robust OOD detection framework that integrates loss correction techniques from the noisy label learning literature with low-rank and sparse decomposition methods from signal processing. Extensive experiments on both synthetic and real-world datasets demonstrate that our method significantly outperforms the state-of-the-art OOD detection techniques, particularly under severe noisy label settings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube