Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Learning spatially structured open quantum dynamics with regional-attention transformers (2509.06871v1)

Published 8 Sep 2025 in quant-ph, cs.LG, and physics.atom-ph

Abstract: Simulating the dynamics of open quantum systems with spatial structure and external control is an important challenge in quantum information science. Classical numerical solvers for such systems require integrating coupled master and field equations, which is computationally demanding for simulation and optimization tasks and often precluding real-time use in network-scale simulations or feedback control. We introduce a regional attention-based neural architecture that learns the spatiotemporal dynamics of structured open quantum systems. The model incorporates translational invariance of physical laws as an inductive bias to achieve scalable complexity, and supports conditioning on time-dependent global control parameters. We demonstrate learning on two representative systems: a driven dissipative single qubit and an electromagnetically induced transparency (EIT) quantum memory. The model achieves high predictive fidelity under both in-distribution and out-of-distribution control protocols, and provides substantial acceleration up to three orders of magnitude over numerical solvers. These results demonstrate that the architecture establishes a general surrogate modeling framework for spatially structured open quantum dynamics, with immediate relevance to large-scale quantum network simulation, quantum repeater and protocol design, real-time experimental optimization, and scalable device modeling across diverse light-matter platforms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube