Sequential Least-Squares Estimators with Fast Randomized Sketching for Linear Statistical Models (2509.06856v1)
Abstract: We propose a novel randomized framework for the estimation problem of large-scale linear statistical models, namely Sequential Least-Squares Estimators with Fast Randomized Sketching (SLSE-FRS), which integrates Sketch-and-Solve and Iterative-Sketching methods for the first time. By iteratively constructing and solving sketched least-squares (LS) subproblems with increasing sketch sizes to achieve better precisions, SLSE-FRS gradually refines the estimators of the true parameter vector, ultimately producing high-precision estimators. We analyze the convergence properties of SLSE-FRS, and provide its efficient implementation. Numerical experiments show that SLSE-FRS outperforms the state-of-the-art methods, namely the Preconditioned Conjugate Gradient (PCG) method, and the Iterative Double Sketching (IDS) method.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.