Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

COMPACT: Common-token Optimized Model Pruning Across Channels and Tokens (2509.06836v1)

Published 8 Sep 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Making LLMs more efficient in memory, latency, and serving cost is crucial for edge deployment, interactive applications, and sustainable inference at scale. Pruning is a key technique toward this goal. However, prior pruning methods are limited: width pruning often breaks the standard transformer layout or requires custom inference code, while depth pruning removes entire layers and can cause abrupt accuracy drops. In this work, we propose COMPACT, which jointly (i) prunes rare vocabulary to shrink embedding/unembedding and (ii) prunes FFN intermediate channels using common-token-weighted activations, aligning importance with the post-pruning token distribution. COMPACT enjoys merits of both depth and width pruning, such as: deployment-friendliness (keeps a standard transformer architecture), scale-adaptivity (trade off vocab vs. FFN pruning), training-free operation with competitive pruning time, and strong memory savings alongside throughput gains. Experiments across Qwen, LLaMA, and Gemma families (0.5B-70B) show state-of-the-art downstream task performance at similar or higher pruning ratios, with substantial reductions in parameters, GPU memory, and end-to-end latency.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube