Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improved Classification of Nitrogen Stress Severity in Plants Under Combined Stress Conditions Using Spatio-Temporal Deep Learning Framework (2509.06625v1)

Published 8 Sep 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Plants in their natural habitats endure an array of interacting stresses, both biotic and abiotic, that rarely occur in isolation. Nutrient stress-particularly nitrogen deficiency-becomes even more critical when compounded with drought and weed competition, making it increasingly difficult to distinguish and address its effects. Early detection of nitrogen stress is therefore crucial for protecting plant health and implementing effective management strategies. This study proposes a novel deep learning framework to accurately classify nitrogen stress severity in a combined stress environment. Our model uses a unique blend of four imaging modalities-RGB, multispectral, and two infrared wavelengths-to capture a wide range of physiological plant responses from canopy images. These images, provided as time-series data, document plant health across three levels of nitrogen availability (low, medium, and high) under varying water stress and weed pressures. The core of our approach is a spatio-temporal deep learning pipeline that merges a Convolutional Neural Network (CNN) for extracting spatial features from images with a Long Short-Term Memory (LSTM) network to capture temporal dependencies. We also devised and evaluated a spatial-only CNN pipeline for comparison. Our CNN-LSTM pipeline achieved an impressive accuracy of 98%, impressively surpassing the spatial-only model's 80.45% and other previously reported machine learning method's 76%. These results bring actionable insights based on the power of our CNN-LSTM approach in effectively capturing the subtle and complex interactions between nitrogen deficiency, water stress, and weed pressure. This robust platform offers a promising tool for the timely and proactive identification of nitrogen stress severity, enabling better crop management and improved plant health.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube