Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Large Language Models as Virtual Survey Respondents: Evaluating Sociodemographic Response Generation (2509.06337v1)

Published 8 Sep 2025 in cs.AI

Abstract: Questionnaire-based surveys are foundational to social science research and public policymaking, yet traditional survey methods remain costly, time-consuming, and often limited in scale. This paper explores a new paradigm: simulating virtual survey respondents using LLMs. We introduce two novel simulation settings, namely Partial Attribute Simulation (PAS) and Full Attribute Simulation (FAS), to systematically evaluate the ability of LLMs to generate accurate and demographically coherent responses. In PAS, the model predicts missing attributes based on partial respondent profiles, whereas FAS involves generating complete synthetic datasets under both zero-context and context-enhanced conditions. We curate a comprehensive benchmark suite, LLM-S3 (LLM-based Sociodemographic Survey Simulation), that spans 11 real-world public datasets across four sociological domains. Our evaluation of multiple mainstream LLMs (GPT-3.5/4 Turbo, LLaMA 3.0/3.1-8B) reveals consistent trends in prediction performance, highlights failure modes, and demonstrates how context and prompt design impact simulation fidelity. This work establishes a rigorous foundation for LLM-driven survey simulations, offering scalable and cost-effective tools for sociological research and policy evaluation. Our code and dataset are available at: https://github.com/dart-lab-research/LLM-S-Cube-Benchmark

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.