Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Minimax optimal transfer learning for high-dimensional additive regression (2509.06308v1)

Published 8 Sep 2025 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: This paper studies high-dimensional additive regression under the transfer learning framework, where one observes samples from a target population together with auxiliary samples from different but potentially related regression models. We first introduce a target-only estimation procedure based on the smooth backfitting estimator with local linear smoothing. In contrast to previous work, we establish general error bounds under sub-Weibull($\alpha$) noise, thereby accommodating heavy-tailed error distributions. In the sub-exponential case ($\alpha=1$), we show that the estimator attains the minimax lower bound under regularity conditions, which requires a substantial departure from existing proof strategies. We then develop a novel two-stage estimation method within a transfer learning framework, and provide theoretical guarantees at both the population and empirical levels. Error bounds are derived for each stage under general tail conditions, and we further demonstrate that the minimax optimal rate is achieved when the auxiliary and target distributions are sufficiently close. All theoretical results are supported by simulation studies and real data analysis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets