Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Toward a Metrology for Artificial Intelligence: Hidden-Rule Environments and Reinforcement Learning (2509.06213v1)

Published 7 Sep 2025 in cs.LG, cs.AI, and stat.ML

Abstract: We investigate reinforcement learning in the Game Of Hidden Rules (GOHR) environment, a complex puzzle in which an agent must infer and execute hidden rules to clear a 6$\times$6 board by placing game pieces into buckets. We explore two state representation strategies, namely Feature-Centric (FC) and Object-Centric (OC), and employ a Transformer-based Advantage Actor-Critic (A2C) algorithm for training. The agent has access only to partial observations and must simultaneously infer the governing rule and learn the optimal policy through experience. We evaluate our models across multiple rule-based and trial-list-based experimental setups, analyzing transfer effects and the impact of representation on learning efficiency.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.