Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Lightweight Intrusion Detection System Using a Hybrid CNN and ConvNeXt-Tiny Model for Internet of Things Networks (2509.06202v1)

Published 7 Sep 2025 in cs.CR

Abstract: The rapid expansion of Internet of Things (IoT) systems across various domains such as industry, smart cities, healthcare, manufacturing, and government services has led to a significant increase in security risks, threatening data integrity, confidentiality, and availability. Consequently, ensuring the security and resilience of IoT systems has become a critical requirement. In this paper, we propose a lightweight and efficient intrusion detection system (IDS) for IoT environments, leveraging a hybrid model of CNN and ConvNeXt-Tiny. The proposed method is designed to detect and classify different types of network attacks, particularly botnet and malicious traffic, while the lightweight ConvNeXt-Tiny architecture enables effective deployment in resource-constrained devices and networks. A real-world dataset comprising both benign and malicious network packets collected from practical IoT scenarios was employed in the experiments. The results demonstrate that the proposed method achieves high accuracy while significantly reducing training and inference time compared to more complex models. Specifically, the system attained 99.63% accuracy in the testing phase, 99.67% accuracy in the training phase, and an error rate of 0.0107 across eight classes, while maintaining short response times and low resource consumption. These findings highlight the effectiveness of the proposed method in detecting and classifying attacks in real-world IoT environments, indicating that the lightweight architecture can serve as a practical alternative to complex and resource-intensive approaches in IoT network security.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.