Quasilinear problems with critical Sobolev exponent for the Grushin p-Laplace operator (2509.06138v1)
Abstract: We study the following class of quasilinear degenerate elliptic equations with critical nonlinearity \begin{align*} \begin{cases}-\Delta_{\gamma,p} u= \lambda |u|{q-2}u+|u|{p_{\gamma}{*}-2}u & \text{ in } \Omega\subset \mathbb{R}N, \ u=0 & \text{ on } \partial \Omega, \end{cases} \end{align*} where $\Delta_{\gamma, p}v:=\sum_{i=1}N X_i(|\nabla_\gamma u|{p-2}X_i u)$ is the Grushin $p$-Laplace operator, $z:=(x, y) \in \mathbb{R}N$, $N=m+n,$ $m,n \geq 1,$, where $\nabla_\gamma=(X_1, \ldots, X_N)$ is the Grushin gradient, defined as the system of vector fields $X_i=\frac{\partial}{\partial x_i}, i=1, \ldots, m$, $X_{m+j}=|x|\gamma \frac{\partial}{\partial y_j}, j=1, \ldots, n$, where $\gamma>0$. Here, $\Omega \subset \mathbb{R}{N}$ is a smooth bounded domain such that $\Omega\cap {x=0}\neq \emptyset$, $\lambda>0$, $q \in [p,p_\gamma*)$, where $p_{\gamma}{*}=\frac{pN_\gamma}{N_\gamma-p}$ and $N_\gamma=m+(1+\gamma)n$ denotes the homogeneous dimension attached to the Grushin gradient. The results extends to the $p$-case the Brezis-Nirenberg type results in Alves-Gandal-Loiudice-Tyagi [J. Geom. Anal. 2024, 34(2),52]. The main crucial step is to preliminarily establish the existence of the extremals for the involved Sobolev-type inequality \begin{equation*} \int_{\mathbb{R}N} |\nabla_{\gamma} u|p dz \geq S_{\gamma,p} \left ( \int_{\mathbb{R}N} |u|{p_\gamma*} dz \right ){p/p_\gamma*} \end{equation*} and their qualitative behavior as positive entire solutions to the limit problem \begin{equation*} -\Delta_{\gamma,p} u= u{p_{\gamma}{*}-1}\quad \mbox{on}\, \mathbb{R}N, \end{equation*} whose study has independent interest.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.