A Hybrid TDMA/CSMA Protocol for Time-Sensitive Traffic in Robot Applications (2509.06119v1)
Abstract: Recent progress in robotics has underscored the demand for real-time control in applications such as manufacturing, healthcare, and autonomous systems, where the timely delivery of mission-critical commands under heterogeneous robotic traffic is paramount for operational efficacy and safety. In these scenarios, mission-critical traffic follows a strict deadline-constrained communication pattern: commands must arrive within defined QoS deadlines, otherwise late arrivals can degrade performance or destabilize control loops.In this work, we demonstrate on a real-time SDR platform that CSMA, widely adopted in robotic communications,suffers severe degradation under high robot traffic loads, with contention-induced collisions and delays disrupting the on-time arrival of mission-critical packets. To address this problem, we propose an IEEE 802.11-compatible hybrid TDMA/CSMA protocol that combines TDMA's deterministic slot scheduling with CSMA's adaptability for heterogeneous robot traffic.The protocol achieves collision-free, low-latency mission-critical command delivery and IEEE 802.11 compatibility through the synergistic integration of sub-microsecond PTP-based slot synchronization-essential for establishing precise timing for TDMA, a three-session superframe with dynamic TDMA allocation for structured and adaptable traffic management,and beacon-NAV protection to preemptively secure these critical communication sessions from interference. Emulation experiments on real-time SDR testbed and Robot Operating System (ROS) simulation show that the proposed protocol reduces missed-deadline errors by 93% compared to the CSMA baseline. In high-speed robot path-tracking ROS simulations, the protocol lowers Root Mean Square (RMS) trajectory error by up to 90% compared with a CSMA baseline, all while maintaining throughput for non-critical traffic within +-2%.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.